Transitioning from a multi-modular system to a single automated device for TCR-T production

Dolores J. Schendel, CSO
Medigene AG

CAR-TCR Europe
February 21-23, 2023
London, UK
All of the information herein has been prepared by the Company solely for use in this presentation. The information contained in this presentation has not been independently verified. No representation, warranty or undertaking, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information or the opinions contained herein. The information contained in this presentation should be considered in the context of the circumstances prevailing at that time and has not been, and will not be, updated to reflect material developments which may occur after the date of the presentation. The Company may alter, modify or otherwise change in any manner the content of this presentation, without obligation to notify any person of such revision or changes.

This presentation may contain certain forward-looking statements and forecasts which relate to events and depend on circumstances that will occur in the future and which, by their nature, will have an impact on the Company’s business, financial condition and results of operations. The terms “anticipates”, “assumes”, “believes”, “can”, “could”, “estimates”, “expects”, “forecasts”, “intends”, “may”, “might”, “plans”, “should”, “projects”, “will”, “would” or, in each case, their negative, or other variations or comparable terminology are used to identify forward-looking statements. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in a forward-looking statement or affect the extent to which a particular projection is realised. Factors that could cause these differences include, but are not limited to, implementation of the Company's strategy and its ability to further grow, risks associated with the development and/or approval of the Company’s products candidates, ongoing clinical trials and expected trial results, technology changes and new products in the Company’s potential market and industry, the ability to develop new products and enhance existing products, the impact of competition, changes in general economy and industry conditions and legislative, regulatory and political factors. While we always intend to express our best judgment when we make statements about what we believe will occur in the future, and although we base these statements on assumptions that we believe to be reasonable when made, these forward-looking statements are not a guarantee of our performance, and you should not place undue reliance on such statements. Forward-looking statements are subject to many risks, uncertainties and other variable circumstances. Such risks and uncertainties may cause the statements to be inaccurate and readers are cautioned not to place undue reliance on such statements. Forward-looking statements are not a guarantee of our performance, and you should not place undue reliance on such statements. Forward-looking statements are subject to many risks, uncertainties and other variable circumstances. Such risks and uncertainties may cause the statements to be inaccurate and readers are cautioned not to place undue reliance on such statements. Many of these risks are outside of our control and could cause our actual results to differ materially from those we thought would occur. The forward-looking statements included in this presentation are made only as of the date hereof. We do not undertake, and specifically decline, any obligation to update any such statements or to publicly announce the results of any revisions to any of such statements to reflect future events or developments.
Medigene’s End-to-End Platform

Multiple Combinable, Exclusive and Proprietary Technologies to Create Best-in-Class TCR-T Therapies for Cancer Patients

Target Screening
- EXPtope-M*
- Allo-HLA TCR Priming*
- CrossTag® Vector System
- JOVI Tag® Enrichment Technology
- Robotic Functional HTS

TCR Generation
- PD1-41BB Switch#
- Precision Pairing*
- Inducible iM-TCR*

TCR-T Therapy Optimization
- SIN-γ- Retroviral Gene Transfer System
- Cell Production Process & Quality Control
- Development Optimization
- Drug Product Immune Assessment*

Manufacturing Scale-up & Process Improvement
- Patient Immune Monitoring*

Clinical Development

Efficacy Enhancements

Safety Enhancements

* Proprietary to MDG
Exclusive to MDG
^ Proprietary to MDG / HMGU
Introduction: Topics for discussion today

- **Multi-modular system as standard to benchmark transition to automated TCR-T production**
 - Establish benchmarks from Drug Products produced for MDG1011 Trial CD-TCR-001
 - Meet the challenge of using starting leukapheresis materials from heavily pretreated, elderly patients
 - Use enriched CD8+T cells frozen at the start and end of the manufacturing process

- **Characterizing patient Drug Products to establish quality standards**
 - Combine molecular and cellular tools to understand the quality of manufactured TCR-T cell Drug Products at different stages of manufacture

- **Utilizing immune monitoring technologies to assess Drug Product behavior in patients in vivo**
 - Apply fit-for-purpose assays to assess patient immune responses over time

- **Transition to automated closed processing with CliniMACS Prodigy™**
 - Advantages and disadvantages
MDG1011: PRAME VLD / HLA-A2 TCR targeting blood cancers
Phase I study of MDG1011 therapy in AML, MDS and MM

MDG1011: PRAME VLD / HLA-A2-specific TCR-T therapy for blood cancers
- PRAME – well-characterized, broadly expressed cancer-testis antigen
- CD8-enriched TCR-T Drug Products display multi-functionality

Phase I
Patients with refractory/relapsed
- Acute myeloid leukemia (AML)
- Myelodysplastic syndrome (MDS)
- Multiple Myeloma (MM)

Three dose levels tested
- 0.1, 1.0, 5.0 x 10^6 TCR-positive T cells / kg body weight
GMP production of cryopreserved personalized TCR-T cells

1. Leukapheresis
2. Enrichment process
 - CD8+ enrichment
 - Intermediate product: cryopreserved CD8+ enriched cells
3. Activation of T cells
 - Anti-CD3 + anti-CD28
4. Retroviral transduction
 - T cell transduction using retronectin
5. Expansion
6. Freezing
 - G-Rex device
 - Cryo-bags
7. Patient treatment
Manufacturing process based on multi-modular system

Advantages:
- Modular semi-automated system provides flexibility
- Up- and down-scaling possible

Disadvantages:
- High manual interventions with risk of contamination
- Multiple handling steps → highly skilled personnel
- Difficult process to standardize
- Clean room class A in B required
Establishing Benchmarks with Results from CD-TCR-001
Cell numbers with high viability were successfully produced

MDG1011: Production of required TCR-T cell numbers expressing specific TCR was feasible for Dose Cohorts 1 - 3

MDG1011: Drug Products with excellent cell viability before and after freezing and thawing were manufactured for all patients

0.1 (Cohort 1), 1.0 (Cohort 2), 5.0 x 10^6 (Cohort 3) TCR-positive T cells / kg body weight
Consistent Drug Products from variable starting materials

Consistent CD8^+ TCR-T cell Drug Products were generated
No detectable AML blast contamination in Drug Products

- **CD8+ cells**
- **CD4+ cells**
- **NK cells**
- **B cells**
- **Monocytes**
- **CD34+ cells**

Apheresis

Intermediate

Drug Product

CD8 enrichment

T cell production
Phenotypic characterization of TCR-T Drug Products
Molecular and cellular tools used for Drug Product study

Surface Expression

Double staining of TCR Vβ chain and pHLA-specific multimer measured by flow cytometry

Antigen-Specific Cytokine Responses

Intracellular IFN-g-staining of TCR-T cell populations after stimulation with T2 cells + specific peptide; T2 cells + ctrl peptide are IFN-g negative (not shown) Multiple cytokines/ cytotoxins can be studied

Molecular Expression

Vector copy number measured in sorted TCR-T cell populations by dPCR
Early T memory cell subsets associated with *in vivo* persistence found in most Drug Products

![Bar chart showing the percentage of CD3+CD8+ T naïve, TSCM, TCM, TEM, TEMRA, and rest cells in different Drug Products.](chart)

<table>
<thead>
<tr>
<th>Drug Product</th>
<th>T naïve</th>
<th>TSCM</th>
<th>TCM</th>
<th>TEM</th>
<th>TEMRA</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP-1</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>n.d.</td>
</tr>
<tr>
<td>DP-2</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
</tr>
<tr>
<td>DP-3</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
</tr>
<tr>
<td>DP-4</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
</tr>
<tr>
<td>DP-5</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
</tr>
<tr>
<td>DP-6</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
</tr>
<tr>
<td>DP-7</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
</tr>
<tr>
<td>DP-8</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
</tr>
<tr>
<td>DP-9</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
</tr>
<tr>
<td>DP-10</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
</tr>
<tr>
<td>DP-11</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
<td>A</td>
<td>DP</td>
</tr>
</tbody>
</table>

*A: Apheresis
DP: Drug Product*
All Drug Products showed IFNγ secretion and tumor target killing after antigen-specific stimulation

<table>
<thead>
<tr>
<th>Cells</th>
<th>IFNγ ELISA1</th>
<th>Cytotoxicity2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2_VLD</td>
<td>1886</td>
<td>4</td>
</tr>
<tr>
<td>K562-A2</td>
<td>2795</td>
<td>63%</td>
</tr>
<tr>
<td>Mel624.38</td>
<td>988</td>
<td>4</td>
</tr>
<tr>
<td>MAR-002</td>
<td>3443</td>
<td>65%</td>
</tr>
<tr>
<td>MAR-004</td>
<td>3420</td>
<td>ND</td>
</tr>
<tr>
<td>MAR-006</td>
<td>1738</td>
<td>12%</td>
</tr>
<tr>
<td>MAR-010</td>
<td>2199</td>
<td>10%</td>
</tr>
<tr>
<td>MAR-012</td>
<td>1771</td>
<td>99%</td>
</tr>
<tr>
<td>MAR-014</td>
<td>771</td>
<td>32%</td>
</tr>
<tr>
<td>MAR-016</td>
<td>1562</td>
<td>99%</td>
</tr>
<tr>
<td>MAR-018</td>
<td>1928</td>
<td>24%</td>
</tr>
<tr>
<td>MAR-022</td>
<td>454</td>
<td>5</td>
</tr>
<tr>
<td>MAR-028</td>
<td>1672</td>
<td>24%</td>
</tr>
<tr>
<td>MAR-033</td>
<td>195</td>
<td>95%</td>
</tr>
<tr>
<td>T2_VLD</td>
<td>2795</td>
<td>4</td>
</tr>
<tr>
<td>K562-A2</td>
<td>988</td>
<td>4</td>
</tr>
<tr>
<td>Mel624.38</td>
<td>971</td>
<td>4</td>
</tr>
</tbody>
</table>

• T2 cells are HLA-A2 positive but PRAME negative. They were pulsed with exogenous PRAME_VLD peptide

• K562 cells are HLA-A2 negative and PRAME positive. They were genetically modified to express HLA-A2

• Mel624.38 cells are endogenously positive for HLA-A2 and PRAME

1 secreted amounts of IFNγ after 24h coculture with indicated target cells in pg/ml
2 normalized killing of indicated target cells after 72h (MAR-004: 16h)
3 normalized killing not calculable due to different method
4 no untransduced control sample available
92% successful Drug Product manufacture (12/13) from heavily pretreated, elderly patients

<table>
<thead>
<tr>
<th>Batch Number</th>
<th>Indication</th>
<th>Manufacturing Date</th>
<th>Cohort Filled</th>
<th>Patient Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR-002</td>
<td>AML</td>
<td>Aug 2018</td>
<td>1</td>
<td>NA</td>
</tr>
<tr>
<td>MAR-004</td>
<td>MM</td>
<td>Jan 2019</td>
<td>1</td>
<td>Patient 1</td>
</tr>
<tr>
<td>MAR-006</td>
<td>AML</td>
<td>Aug 2019</td>
<td>1</td>
<td>Patient 2</td>
</tr>
<tr>
<td>MAR-010</td>
<td>AML</td>
<td>Jan 2020</td>
<td>1</td>
<td>Patient 3</td>
</tr>
<tr>
<td>MAR-012</td>
<td>AML</td>
<td>Feb 2020</td>
<td>2</td>
<td>Patient 1</td>
</tr>
<tr>
<td>MAR-014</td>
<td>AML</td>
<td>Apr 2020</td>
<td>2</td>
<td>OOS*</td>
</tr>
<tr>
<td>MAR-016</td>
<td>AML</td>
<td>Jun 2020</td>
<td>2</td>
<td>NA</td>
</tr>
<tr>
<td>MAR-018</td>
<td>MM</td>
<td>Jul 2020</td>
<td>2</td>
<td>Patient 2</td>
</tr>
<tr>
<td>MAR-022</td>
<td>AML</td>
<td>Sep 2020</td>
<td>2</td>
<td>Patient 3</td>
</tr>
<tr>
<td>MAR-024</td>
<td>MDS</td>
<td>Nov 2020</td>
<td>3</td>
<td>NA</td>
</tr>
<tr>
<td>MAR-028</td>
<td>AML</td>
<td>Mar 2021</td>
<td>3</td>
<td>Patient 1</td>
</tr>
<tr>
<td>MAR-030 *</td>
<td>AML</td>
<td>Apr 2021</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>MAR-033</td>
<td>MDS</td>
<td>Mai 2021</td>
<td>3</td>
<td>Patient 3</td>
</tr>
</tbody>
</table>

*Analytical data from batch MAR-030 are not complete. Due to poor cell growth not all samples could be taken.
* Out of specification (OOS), % CD8+ T cells too low
NA = not applied
Fit-for-Purpose Immune Monitoring assays of patient samples

- **Identification of TCR-T cells**
 - Multimer staining of T cells expressing recombinant TCR
 - Digital droplet PCR for detection of recombinant TCR

- **Characterization of TCR-T cells**
 - Determination of T-memory subset composition
 - Determination of T-activation markers
 - Determination of T-checkpoint status

- **Functional analysis of TCR-T cells**
 - Multiplex assay of TCR-T cytokine secretion
 - Intracellular cytokine staining of TCR-expressing T cells
 - Proliferation of TCR-Ts after stimulation
Detection of MDG1011 \textit{in vivo} persistence without IL-2

T cell persistence seen in 4 patients treated with the two highest doses of TCR-T cells

\textbf{C2P1 (AML)}

\textbf{C2P2 (MM)}

\textbf{C3P1 (AML)}

\textbf{C3P3 (MDS)}

\(\text{nt} = \text{not tested} \)

\(\text{LoQ} = 36 \text{ copies} / 100 \text{ ng RNA} \)
Reduction of PRAME mRNA in blood and bone marrow at 4 weeks

- Reduction of PRAME mRNA expression in patient bone marrow in 1 of 2 MM patients
- Reduction of PRAME mRNA expression in patient bone marrow in 3 of 3 evaluable AML patients
- Reduction of PRAME mRNA expression in patient peripheral blood in 2 patients at the top dose level

C1P2, C1P3, C3P1, C3P3: SCR/SCR2 and/or V05 bone marrow samples not available
Multi-modular process enabled CD-TCR-001 to meet its objectives

- 92% successful manufacturing from heavily pretreated, elderly patients
 - Benchmarks were established for the multi-modular production process
 - Excellent cell viability for all batches before freezing and after thawing

- MDG1011 was well tolerated with no DLT or neurotoxicities

- Signs of biological and/or clinical activity
 - 1x CR
 - 2x CRS
 - 1 MDS patient without progression to AML after > 16 months still under observation; detection of TCR-T cells at EoT visit at 12 months
 - Reduction of PRAME mRNA in blood and bone marrow
Automated fully closed processing of TCR-T cells

Advantages:
• Fully closed system with single-use tubing set
• Can be used in clean room class C
• PIFs and CE-marked reagents available for clinical use
• Reduction of manual handling steps and hands-on time
• Less human error
• Process monitoring in one device

Disadvantages:
• Non-scalable
CliniMACS Prodigy yields high T cell numbers and high viability

X-fold expansion rates increased in the CliniMACS Prodigy compared to multi-modular process
CliniMACS Prodigy T cells show improved transduction rates
CliniMACS Prodigy-derived TCR-T cells display good functionality

IFN-γ ELISA

Prodigy-derived TCR-T cells showed comparable or increased target cell recognition compared to standard

Killing assay

Target: peptide-loaded T2

Target: K562-A2

Target: Mel624.38

Prodigy
Standard
NT control

Prodigy
Standard
NT control

Red count

RCU x µm²/image
CliniMACS Prodigy process met or exceeded benchmarks set by multi-modular process

- Strong Benchmarks were established for the multi-modular production process
 - 92% met release specifications
 - Excellent cell viability for all batches before freezing and after thawing
 - Robust production of CD8-enriched TCR-T drug products
- Results of our first steps in transition to a fully closed system were successful
 - High viability of Drug Products
 - Adequate levels of TCR transduction
 - Improved T cell proliferation
 - High functional capacities of TCR-T Drug Products

Strong Benchmarks guide improved manufacturing options
Acknowledgements

Clinical Trial Centers

- **Regensburg**: University Hospital - Internal Medicine III
- **Erlangen**: University Hospital - Department of Medicine 5
- **Würzburg**: University Hospital - Internal Medicine II
- **Dresden**: University Hospital Carl Gustav Carus, UCC & Early Clinical Trial Unit
- **Freiburg**: University Hospital - Department of Medicine I
- **Heidelberg**: University Hospital - Internal Medicine V
- **Mainz**: University Medical Center (Johannes Gutenberg-University) - Department of Internal Medicine III
- **Frankfurt**: University Hospital - Department of Internal Medicine II
- **Leipzig**: University Hospital – Department of Internal Medicine II

https://clinicaltrials.gov/ct2/show/NCT03503968
Thank you for your attention