Improving TCR-T Therapeutic Persistence and Efficacy with Switch Receptors

8th Annual CAR-TCR Engineering a Disease-Free World
Aug 29-Sep 1, 2023, Boston
Forward Looking Statement

All of the information herein has been prepared by Medigene AG (the “Company”) solely for use in this presentation. The information contained in this presentation has not been independently verified. No representation, warranty or undertaking, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information or the opinions contained herein. The information contained in this presentation should be considered in the context of the circumstances prevailing at that time and has not been, and will not be, updated to reflect material developments which may occur after the date of the presentation. The Company may alter, modify or otherwise change in any manner the content of this presentation, without obligation to notify any person of such revision or changes.

This presentation may contain certain forward-looking statements and forecasts which relate to events and depend on circumstances that will occur in the future and which, by their nature, will have an impact on the Company’s business, financial condition and results of operations. The terms “anticipates”, “assumes”, “believes”, “can”, “could”, “estimates”, “expects”, “forecasts”, “intends”, “may”, “might”, “plans”, “should”, “projects”, “will”, “would” or, in each case, their negative, or other variations or comparable terminology are used to identify forward-looking statements. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in a forward-looking statement or affect the extent to which a particular projection is realized. Factors that could cause these differences include, but are not limited to, implementation of the Company’s strategy and its ability to further grow, risks associated with the development and/or approval of the Company’s products candidates, ongoing clinical trials and expected trial results, technology changes and new products in the Company’s potential market and industry, the ability to develop new products and enhance existing products, the impact of competition, changes in general economy and industry conditions and legislative, regulatory and political factors. While we always intend to express our best judgment when we make statements about what we believe will occur in the future, and although we base these statements on assumptions that we believe to be reasonable when made, these forward-looking statements are not a guarantee of our performance, and you should not place undue reliance on such statements. Forward-looking statements are subject to many risks, uncertainties and other variable circumstances. Such risks and uncertainties may cause the statements to be inaccurate and readers are cautioned not to place undue reliance on such statements. Many of these risks are outside of our control and could cause our actual results to differ materially from those we thought would occur. The forward-looking statements included in this presentation are made only as of the date hereof. We do not undertake, and specifically decline, any obligation to update any such statements or to publicly announce the results of any revisions to any of such statements to reflect future events or developments.

To the extent available, the industry, market and competitive position data contained in the presentation come from official or third-party sources. Third party industry publications, studies and surveys generally state that the data contained therein have been obtained from sources believed to be reliable, but that there is no guarantee of the accuracy or completeness of such data. While the Company believes that each of these publications, studies and surveys has been prepared by a reputable source, none of the Company, its shareholders or any of their respective representatives has independently verified the data contained therein. You are therefore cautioned not to give undue weight to third party data. In addition, certain of the industry, market and competitive position data contained in this presentation come from the Company’s own internal research and estimates based on the knowledge and experience of the Company’s management in the markets in which the Company. While the Company believes that such research and estimates are reasonable, they, and their underlying methodology and assumptions, have not been verified by any independent source for accuracy or completeness and are subject to change and correction without notice. Accordingly, reliance should not be placed on any of the industry, market or competitive position data contained in this presentation.
Medigene’s Ethos - Optimal TCRs for Potential Best-in-Class TCR-T Therapies

End-to End (E2E) Platform - Designed to generate highest levels of safety, efficacy & durability

Develop Best-in-Class, Optimal TCRs

Optimize TCR-T Therapies

1. Suitable and Safe TCR Target
2. High Specificity, High Sensitivity, Safe, “3S” TCR, Optimal Affinity
3. Higher Avidity TCR-T Cells
4. Enhanced Activity in TME
5. Robust GLP Manufacturing

Target Screening → TCR Generation → TCR-T Therapy Optimization → Manufacturing Scale-up & Process Improvement → Best-in-Class TCR-T Therapy for Patients

Expitope → Allo-HLA TCR Priming → Precision Pairing → Costimulatory Switch Proteins → GMP Drug Products

End-To-End (E2E) Technology Platform
Multiple combinable, exclusive and proprietary technologies, combined with proprietary work processes and selection algorithms
Medigene’s End-to-End Platform for TCR-T Therapy

Multiple combinable, exclusive and proprietary technologies to create best-in-class TCR-T therapies for cancer patients

Target Screening
- Expitope
- Allo-HLA TCR Priming*
- CrossTag* Vector System
- JOVI Tag* Enrichment Technology
- Robotic Functional HTS

TCR Generation
- Precision Pairing*
- PD1-41BB Switch#

TCR-T Therapy Optimization
- CD40L-CD28 Switch*
- Inducible iM-TCR*

Manufacturing Scale-up & Process Improvement
- SIN-γ- Retroviral Gene Transfer System
- Cell Production Process & Quality Control
- Drug Product Immune Assessment*

Clinical Development
- Patient Immune Monitoring*

Development Optimization

Efficacy Enhancements

Safety Enhancements

* Proprietary to MDG
# Exclusive to MDG
^ Proprietary to MDG / HU
Expitope
Webtool to Identify Immunogenic Epitopes as Potential TCR Targets
Enhanced Screen for Cross-Reactive Epitopes in silico
Expitope - Qualitative and Quantitative Target Safety Assessments at RNA and Proteome Levels

Unmet need

• Cross-reactivation of unwanted T cell response may result in significant, often lethal toxicity

Medigene’ solution: Expitope

• In silico epitope expression assessment in various tissues and cell lines allows for screening of potential cross-reactivity and off-target toxicity
• Identifying target epitopes for TCR isolation; predicting binding affinities and cross-reactivities

- Prof. D. Frishman, Bioinformatics Faculty, Technical Uni. Munich
- Open access web tool for scientific community, hosted by TUM
  - [http://webclu.bio.wzw.tum.de] expitope
  - 370,000+ annotated sequences, updated regularly
  - 100+ HLA class I alleles, expanding by need
  - 20+ healthy tissues, growing continuously
  - Easy access Website
medigene

TCR Generation
Medigene TCR Generation – Selecting Optimal Affinity 3S TCRs

Refined and robust workflows established

High Specificity
pHLA recognition reaches pre-defined thresholds

High Sensitivity
Optimal affinity to recognize and kill tumor cells with low levels of antigen / epitope

Safety
Clear differentiation between tumor and healthy cells
No recognition of allogeneic HLAs

Additional Attributes
Natural high heterodimer pairing ➔ High avidity through high surface expression on recipient T cells
CD8 co-receptor independency ➔ Strong TCR-mediated functions in both CD4 and CD8 T cells
TCR Generation – DC-T Cell Priming Using Healthy Donors

Healthy donors provide high TCR sequence diversity for better choice of lead TCRs

Advantages of priming approach

✓ Ready access to healthy donors
  ✓ autologous DCs
  ✓ autologous T cells

✓ ivtRNA is versatile source of antigen

✓ HTS yields thousands of specific T cell clones for lead TCR selection

✓ RV TCR transfer vector is efficient and fast
Allo-HLA TCR Priming Helps Find Optimal TCRs for Self-Antigens

Bypasses *Central Tolerance* that limits TCR affinities to self-antigens like CGAs

Advantages of Allo-HLA-Priming to Discover TCRs

- Higher-affinity TCRs
- Any HLA allotype
- Any target antigen
- No patient samples
- No need for affinity maturation

DCs and T cells come from HLA-A2-negative donors so T cells not subjected to deletional tolerance.
Transgenic assessment of dozens of independent TCR sequences

10-30 healthy donors of T cells used for priming in DC-T cell co-cultures

Assessment of thousands of single cell clones (e.g. 60K) to select hundreds of specific T cell clones to perform individual NGS TCR sequencing

Transgenic assessment of dozens of independent TCR sequences

Antigen selection

High-throughput automation
- Standardization and reproducibility
- Functional screen of thousands of T cell clones
- Fast isolation of high-affinity TCRs

3S TCR selection for Specificity, Sensitivity & Safety
- TCRs developed from healthy donor T cells
- Assay algorithm to select optimal target-specific TCRs
  - Potency / efficacy — high-affinity TCRs with optimal tumor cell cytotoxicity and highest peptide sensitivity
  - Safety / specificity — exhaustive assessment to minimize potential cross-reactivity

3S TCR leads
Allo-HLA-Primed TCR is Superior to Auto-HLA-Primed TCR Specific for MAGE-A4 CGA/CTA

**Tumor Cell Panel Sensitivity (in vitro)**

- **Auto TCR**
- **Allo TCR**

<table>
<thead>
<tr>
<th>Tumor Cell</th>
<th>MAGE-A4 mRNA levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mel A375</td>
<td>NC1-H1755</td>
</tr>
<tr>
<td>UACC-62</td>
<td>NCI-H1703</td>
</tr>
<tr>
<td>U266</td>
<td>NCI-H2023</td>
</tr>
<tr>
<td>SAOS2</td>
<td>MOF7</td>
</tr>
</tbody>
</table>

**Effect on Tumor Volume (in vivo)**

- **Vehicle**
- **Untransduced**
- **Auto TCR**
- **Allo TCR**

*"Murine Xenograft model" used for TCR-T treatment of subcutaneous MelA375 solid tumors

Greater Sensitivity for Tumor Cells with Rapid & Complete Effect on Tumor Volume vs. Auto-TCR

---

Validated Approach to Acquire Optimal Affinity 3S TCRs

Decades of TCR development in cancer-germline antigens & more recently neoantigens

- **MAGE-A4 A*02** (2Seventy Bio)
- **NY-ESO-1 / LAGE-1a A*02** (MDG1015)
- **PRAME A*02 (VLD)** (MDG1011)
- **KRAS G12V A*11** (MDG2011)
- **PRAME A*02 (SLL)** (BIONTECH)
- **KRAS G12V A*03** (MDG2012)
- **KRAS G12D A*11** (MDG2021)
PD1-41BB Costimulatory Switch Protein Armors and Enhances TCR-T Cells by Changing Inhibition into Activation

- Inhibits T Cell Activity
- Induces T Cell Exhaustion
- Drives T Cell Apoptosis

- Blocks PD-L1-Mediated Inhibition
- Provides T Cell Costimulation
- Enhances TCR-T Activity and Survival
PD1-41BB CSP Positively Impacts Multiple TCR-T Cell Functions

- Sustained proliferation
- Maintenance of stemness
- In vivo efficacy
- Mitigate inhibitory TME
- Overcome T cell exhaustion
- Enhanced functionality \textit{in vitro}
CD40L-CD28 Costimulatory Switch Protein Provides Dual Enhancement of TCR-T Cells

- Reduces TME Penetration
- Limits Tumor Cell Killing
- Allows T Cell Exhaustion & Apoptosis

- Activates Local Endothelium for T Cell Entry
- Allows TCR-T Cells to Shape Negative TME
- Mitigates T Cell Exhaustion & Apoptosis
CD40L-CD28 Switch Protein – Mechanisms of Enhancement

CD40L-CD28 alters TME via external interactions with CD40 and provides T cell costimulation

**CD40L**

1. Activates endothelium for T cell transmigration
2. Licenses DCs to prime new T cells and recruit NK cells
3. Enables T cells to kill tumor cells via CD40 (HLA dependent & independent mechanisms)

**CD28**

4. Activates costimulatory pathway in TCR-T cells
   - improves T cell proliferation
   - enhances T cell functions
   - limits T cell exhaustion & apoptosis

Adapted from https://www.frontiersin.org/articles/10.3389/fimmu.2021.750478/full
TCR-T Therapy Optimization Using Costimulatory Switch Proteins

Two unique CSPs provide complementary mitigation of the immunosuppressive TME

PD1-41BB

- Blocks PD1-PDL1 inhibitory axis
- Improves T cell persistence in TME
- Increases cytokine secretion & tumor cell killing
- Increases T cell proliferation

CD40L-CD28

- Enhances tumor penetration
- Broadens TME immune responses
MDG1015
3rd Generation NY-ESO-1 / LAGE-1a Targeted TCR-T Therapy – Optimal Affinity
3S TCR Combined with PD1-41BB CSP
Optimal Affinity 3S TCR Generated for CGA – NY-ESO-1/LAGE-1a

Non-mutated Allo-HLA-primed TCR and affinity-matured (mutated) TCR are comparable

Tumor Cell Panel Sensitivity

TCR-T Cell Functional Avidity

Advantages of Allo-HLA-Priming to Discover TCRs

✓ Higher-affinity TCRs
✓ Any HLA allotype
✓ Any target antigen
✓ No patient samples
✓ No need for affinity maturation
CD8⁺ Transduced TCR-T Cells Co-Express TCR +/- PD1-41BB

Donor A

Donor B
PD1-41BB Switch Receptor Enhances and Sustains TCR-T Cell Proliferation

Enhanced TCR-T proliferation with TCR+PD1-41BB vs. Naked TCR

<table>
<thead>
<tr>
<th>Count</th>
<th>Percent Divided</th>
<th>Proliferation Index</th>
<th>Expansion Index</th>
<th>Division Index</th>
<th>Replication Index</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naked TCR</td>
<td>24.3</td>
<td>1.98</td>
<td>2.09</td>
<td>0.48</td>
<td>5.49</td>
<td>1.36</td>
</tr>
<tr>
<td>TCR+PD1-41BB</td>
<td>42.7</td>
<td>2.91</td>
<td>5.05</td>
<td>1.24</td>
<td>10.5</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Analyzed by FlowJo
Superior Frequency of T Cells Producing Multiple Cytokines Compared to Naked TCR for Improved Anti-Tumor Activity

**Improved Polyfunctionality (multi-cytokine production)**

- **UT**
- **TCR**
- **MDG1015**

**Mel624.38_PD-L1**
- 2 analytes
- 3 analytes
- 4 analytes
- 5+ analytes

**MelA375_PD-L1**

**Greater Polyfunctional Strength Index**

- **UT**
- **TCR**
- **MDG1015**

**Mel624.38_PD-L1**

**MelA375_PD-L1**

**Effector**: Granzyme B; IFN-γ; MIP-1α; Perforin; TNF-α; TNF-β

**Stimulatory**: GM-CSF; IL-2; IL-5; IL-7; IL-8; IL-9; IL-12; IL-15; IL-21

**Chemoattractive**: CCL-11; IP-10; MIP-1α; RANTES

**Regulatory**: IL-4; IL-10; IL-13; IL-22; TGF-β1; sCD137; sCD40L

**Inflammatory**: IL-1β; IL-6; IL-17α; IL-17F; MCP-1; MCP-4

*Superior Frequency of T Cells Producing Multiple Cytokines Compared to Naked TCR for Improved Anti-Tumor Activity*
TCR-T Cells Display Rapid Killing Capacity for Both Target Antigens

Strong pre-clinical data supports addition of PD1-41BB to a TCR targeting NY-ESO-1 / LAGE-1a

Rapid Killing Assay: 0 – 96 hours

MelA375 (NY-ESO-1+)

Mel624.38 (LAGE-1+)
TCR-T Cells Display Sustained Killing Upon Tumor Rechallenge

Sustained TCR-T Cell Killing Requires pHLA and PD1-L1 Signals from Tumor Cells

- TCR
- TCR+ PD1-41BB

Day 0 | Day 3 | Day 7 | Day 14/17

Mel624.38_PD-L1_NLR
LAGE-1a +++
PD-L1 +++

NCI-H1755_NLR
NY-ESO-1 +++
PD-L1 -

647V_NLR
NY-ESO-1 -
PD-L1 ++
Medigene’s Ethos - Optimal TCRs for Potential Best-in-Class TCR-T Therapies

End-to End (E2E) Platform - Designed to generate highest levels of safety, efficacy & durability

1. Suitable and Safe TCR Target
2. High Specificity, High Sensitivity, Safe, “3S” TCR, Optimal Affinity
3. Higher Avidity TCR-T Cells
4. Enhanced Activity in TME
5. Robust GLP Manufacturing

Target Screening → TCR Generation → TCR-T Therapy Optimization → Manufacturing Scale-up & Process Improvement

Expitope → Allo-HLA TCR Priming → Precision Pairing → Costimulatory Switch Proteins → GMP Drug Products

End-To-End (E2E) Technology Platform
Multiple combinable, exclusive and proprietary technologies, combined with proprietary work processes and selection algorithms
MDG1015: First-in-Human Clinical Study with PD1-41BB Switch Receptor
CTA / IND approval expected 2H 2024

**Ph1**
- Multi-center, first in human, open label, dose-escalation and cohort expansion phase 1 study
- Aim: To assess the safety, feasibility and preliminary efficacy of MDG1015

- Adult patients
- HLA-A*02:01-positive and NY-ESO-1 and/or LAGE-1a-positive patients eligible

- Multiple indications selected based predominantly on target expression, PD-L1 expression and patient availability
  - Synovial Sarcoma will be one of the indications

- IND/CTA approval expected in the second half of 2024
- First patient enrolled planned for second half of 2024, subject to financing
Thank you for your attention