Case Study Spotlight: Introducing Innovations at Each Step of TCR-T Therapy Development

TCR-Based Therapies for Solid Tumors Summit
April 4, 2023 Boston
Forward Looking Statement

All of the information herein has been prepared by Medigene AG (the “Company”) solely for use in this presentation. The information contained in this presentation has not been independently verified. No representation, warranty or undertaking, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information or the opinions contained herein. The information contained in this presentation should be considered in the context of the circumstances prevailing at that time and has not been, and will not be, updated to reflect material developments which may occur after the date of the presentation. The Company may alter, modify or otherwise change in any manner the content of this presentation, without obligation to notify any person of such revision or changes.

This presentation may contain certain forward-looking statements and forecasts which relate to events and depend on circumstances that will occur in the future and which, by their nature, will have an impact on the Company’s business, financial condition and results of operations. The terms “anticipates”, “assumes”, “believes”, “can”, “could”, “estimates”, “expects”, “forecasts”, “intends”, “may”, “might”, “plans”, “should”, “projects”, “will”, “would” or, in each case, their negative, or other variations or comparable terminology are used to identify forward-looking statements. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in a forward-looking statement or affect the extent to which a particular projection is realized. Factors that could cause these differences include, but are not limited to, implementation of the Company’s strategy and its ability to further grow, risks associated with the development and/or approval of the Company’s products candidates, ongoing clinical trials and expected trial results, technology changes and new products in the Company’s potential market and industry, the ability to develop new products and enhance existing products, the impact of competition, changes in general economy and industry conditions and legislative, regulatory and political factors. While we always intend to express our best judgment when we make statements about what we believe will occur in the future, and although we base these statements on assumptions that we believe to be reasonable when made, these forward-looking statements are not a guarantee of our performance, and you should not place undue reliance on such statements. Forward-looking statements are subject to many risks, uncertainties and other variable circumstances. Such risks and uncertainties may cause the statements to be inaccurate and readers are cautioned not to place undue reliance on such statements. Many of these risks are outside of our control and could cause our actual results to differ materially from those we thought would occur. The forward-looking statements included in this presentation are made only as of the date hereof. We do not undertake, and specifically decline, any obligation to update any such statements or to publicly announce the results of any revisions to any of such statements to reflect future events or developments.

To the extent available, the industry, market and competitive position data contained in the presentation come from official or third-party sources. Third party industry publications, studies and surveys generally state that the data contained therein have been obtained from sources believed to be reliable, but that there is no guarantee of the accuracy or completeness of such data. While the Company believes that each of these publications, studies and surveys has been prepared by a reputable source, none of the Company, its shareholders or any of their respective representatives has independently verified the data contained therein. You are therefore cautioned not to give undue weight to third party data. In addition, certain of the industry, market and competitive position data contained in this presentation come from the Company’s own internal research and estimates based on the knowledge and experience of the Company’s management in the markets in which the Company. While the Company believes that such research and estimates are reasonable, they, and their underlying methodology and assumptions, have not been verified by any independent source for accuracy or completeness and are subject to change and correction without notice. Accordingly, reliance should not be placed on any of the industry, market or competitive position data contained in this presentation.
Medigene’s End-to-End Platform for TCR-T Therapy Development

Multiple, Combinable Technologies to Create Best-in-Class TCR-T Therapies for Cancer Patients

- Target Screening
 - EXPtope-M*
 - Allo-HLA TCR Priming*
 - CrossTag* Vector System
 - JOVI Tag* Enrichment Technology
 - Robotic Functional HTS

- TCR Generation
 - PD1-41BB Switch#
 - Precision Pairing*
 - Inducible iM-TCR*

- TCR-T Therapy Optimization
 - SIN-γ- Retroviral Gene Transfer System
 - Cell Production Process & Quality Control
 - Drug Product Immune Assessment*

- Manufacturing Scale-up & Process Improvement

- Clinical Development
 - Patient Immune Monitoring*

Development Optimization, Efficacy Enhancements, Safety Enhancements

* Proprietary to MDG
Exclusive to MDG
^ Proprietary to MDG / HMGU
Six Key Platform Technologies

- Allo-HLA TCR Priming
- JOVI Tag
- Precision Pairing
- iM-TCR
- EXPitope-M
- PD1-41BB Switch Receptor

* Proprietary to MDG
Exclusive to MDG
^ Proprietary to MDG / HMGU
EXPItope-M*
Tool to Identify Immunogenic Epitopes as Potential TCR Target Specificities and Screen for Safety in silico
EXPltope-M - Qualitative and Quantitative Target Safety Assessments at RNA and Proteome Levels

Unmet need

• Cross-reactivation of unwanted T cell response may result in significant, often lethal toxicity

Medigene’ solution: Expitope

• *In silico* epitope expression assessment in various tissues and cell lines allows for screening of potential cross-reactivity and off-target toxicity
• Identifying target epitopes for TCR isolation; predicting cross-reactivity and binding affinities

- Prof. D. Frishman, Bioinformatics Faculty, Technical Uni. Munich
- Open access web tool for scientific community, hosted by TUM
 - Expitope
 - Expitope 3.0 coming soon!
 - 370,000+ annotated sequences, updated daily
 - 100+ HLA class I alleles, expanded by need
 - 20+ healthy tissues, growing continuously
Healthy Donors Provide High TCR Sequence Diversity for Better Choice of Lead TCRs

Advantages of priming approach

- Ready access to healthy donors
 - autologous DCs
 - autologous T cells
- ivtRNA is versatile source of antigen
- HTS yields thousands of specific T cell clones for lead TCR selection
- RV TCR transfer vector is efficient and fast
Automated High-Throughput TCR Discovery Quickly Delivers Multiple TCR Candidates

Antigen selection

Healthy donor cells used for priming in DC-T cell co-cultures

Selection of antigen-specific T cell clones and their TCR sequences

Transgenic assessment of TCRs focusing on Sensitivity, Specificity, and Safety

TCR leads

High-throughput automation
- Standardization and reproducibility
- Functional screen of thousands of T cell clones
- Fast isolation of high-affinity TCRs

3S TCR selection for Specificity, Sensitivity & Safety
- TCRs developed from healthy donor T cells
- Assay algorithm to select optimal target-specific TCRs
 - Potency / efficacy — high-affinity TCRs with optimal tumor cell cytotoxicity and highest peptide sensitivity
 - Safety / specificity — exhaustive assessment to minimize potential cross-reactivity
Allo-HLA TCR Priming*
Bypass Central Tolerance to Isolate High-Affinity Natural TCRs for Improved Sensitivity and Safety
Allo-HLA TCR Priming Yields High-Affinity TCRs Without Need for Affinity Maturation

- **HLA-A2^{pos} donor**
 - Thymus:
 - HLA-A2-peptide complexes present
 - ✓ low affinity
 - Blood:
 - ❌ high affinity
 - TOLERANT peripheral T cell repertoire
 - Few higher-affinity TCRs are present for HLA-A2-self-peptide complexes

- **HLA-A2^{neg} donor**
 - Thymus:
 - low affinity to HLA-A2
 - HLA-A2-peptide complexes absent
 - ✓ high affinity to HLA-A2
 - Blood:
 - ✓ low affinity to HLA-A2
 - NON-TOLERANT peripheral T cell repertoire
 - Higher-affinity TCRs are present for HLA-A2-allo-peptide complexes
Allo-HLA-Primed TCR is Superior to Auto-HLA-Primed TCR Specific for MAGE-A4 CTA

Tumor Cell Panel Sensitivity *(in vitro)*

- **Auto TCR**
- **Allo TCR**

<table>
<thead>
<tr>
<th>Tumor Cell Line</th>
<th>IFNγ [pg/mL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mel A375</td>
<td>0 – 2000</td>
</tr>
<tr>
<td>NCI-H1755</td>
<td>2000 – 4000</td>
</tr>
<tr>
<td>UACC 62</td>
<td>4000 – 6000</td>
</tr>
<tr>
<td>NCI-H1703</td>
<td>6000 – 8000</td>
</tr>
<tr>
<td>U266</td>
<td>8000 – 10000</td>
</tr>
<tr>
<td>NCI-H2023</td>
<td>0 – 2000</td>
</tr>
<tr>
<td>SKOS2</td>
<td>2000 – 4000</td>
</tr>
<tr>
<td>MOF7</td>
<td>4000 – 6000</td>
</tr>
</tbody>
</table>

MAGE-A4 mRNA levels

- Greater Sensitivity for Tumor Cells with Rapid & Complete Effect on Tumor Volume vs. Auto-TCR

Effect on Tumor Volume *(in vivo)*

- **Vehicle**
- **Untransduced**
- **Auto TCR**
- **Allo TCR**

Murine Xenograft model used for TCR-T treatment of subcutaneous MelA375 solid tumors

Allo-HLA-Primed TCR and Affinity-Matured TCR Are Comparable

Tumor Cell Panel Sensitivity

- FM6
- U256
- Mel 024.39
- FM 5.29
- SAOS2
- MM 415
- SK-Mel 23

TCR-T Cell Functional Avidity

- Naked NY-ESO-1 TCR
- Benchmark TCR
- Untransduced

Untransduced: T cells lacking TCR-encoding viral vector
Allo-HLA TCR Priming Helps Find Optimal TCRs for Self-Antigens

Advantages of Allo-HLA-Primed to Discover TCRs

- Higher-affinity TCRs
- Any HLA allotype
- Any target antigen
- No patient samples
- No need for affinity maturation

Generate allogeneic MHC-peptide ligands by expressing both antigen and HLA in DCs
JOVI-Tag*
Standardize Enrichment and Tracking of rTCR-Expressing T Cells to Select Safer TCRs

* Proprietary to MDG
JOVI-Tag Allows Easy Tracking and Enrichment of Cβ1+ rTCRs in Cβ1-Negative Recipient T Cells

rTCRs with Cβ1+ Constant Regions Specifically Bind Jovi-1 Antibody

CD8+ T cells with mixes of Cβ1 and Cβ2 endogenous TCRs

- Cβ1 TCR
- Cβ2 TCR
- JOVI.1(-biotin)
- anti-biotin microbeads
- retroviral particle encoding Cβ1 TCR

CD8+ T cells with Cβ1 endogenous TCRs bind Jovi-Aby

RV Transfer of Cβ1+ rTCRs

Specific depletion of Cβ1 T cells+

Antigen-specific expansion

Identify rTCR+ TCR-Ts by Jovi-1 Tag

Non-specific expansion

Enriched Cβ1+ T cells
JOVI-Tag - High Throughput Comparison of Multiple rTCRs Allows Selection of Safer and Best-in-Class TCRs

Exemplary gating strategy

% Cβ1+ cells on CD8+ cells

% pentamer+ cells on Cβ1+ cells CD8+ cells

Donor A Donor B

Cb1+ on CD8+

multimer+ on Cb1+CD8+

Freq. of parental [%]
Precision Pairing*
Modify and Tailor TCR Constant Regions to Improve Functional Activity and Safety
Precision Pairing Improves TCR Alpha-Beta Chain Interactions

Suboptimal chain pairing allows more TCR mispairing and potential off-target reactivity

Improved rTCR pairing gives better surface expression and improves safety
Sensitivity & Functional Avidity is Improved in Precision Paired rTCRs

Improved TCR Tumor Cell Sensitivity

![Graph showing TCR activation](image)

Improved TCR-T Cell Functional Avidity

![Graph showing IFNγ production](image)

Specific peptide concentration [M] vs. IFNγ (pg/mL) for WT TCR, Precision-Paired TCR, and Untransduced TCR.
iM-TCR*
Novel Control Mechanism to Regulate TCR-T Therapy Efficacy & Safety
iM-TCR Strictly Controls rTCR Alpha-Beta Chain Pairing Through Ligand-Induced Dimerization for Better Efficacy and Safety

Advantages of iM-TCRs

- Strict control of TCR-T activity enhances safety
- Lack of TCR mispairing improves functional avidity
- TCR expression is time and ligand concentration dependent
- Transient tuning of TCR-T activity ex vivo for therapy of inflammation-sensitive indications like brain tumors
TCR Dimerization Strictly Controls Killing Capacity of iM-TCR-T Cells

Endpoint (40h) Start (0h)

wt-TCR Antigen-negative Antigen-positive

iM-TCR Antigen-negative Antigen-positive

Endoxifen

0µM 0µM 10µM 10µM
PD1-41BB Switch Receptor#
Next Generation Co-stimulatory Switch Receptor to Enhance TCR-T Cell Functions and Overcome an Immunosuppressive TME
PD1-41BB Switch Receptor Changes T Cell Inhibition into Activation

Tumor cell

PD-L1

HLA

PD-1

TCR

Apoptotic T cell

Exhausted T cell

41BB

Tumor cell

PD-L1

HLA

PD-1

TCR

Apoptotic tumor cell

Effector T cells
PD1-41BB Switch Receptor Improves Proliferation and Tumor Recognition

Enhanced TCR-T Cell Proliferation

Better T Cell Activation and Tumor Cell Line Recognition

Donor 1 Naked NY-ESO-1 TCR
Donor 1 MDG1015
Donor 2 Naked NY-ESO-1 TCR
Donor 2 MDG1015
Donor 3 Naked NY-ESO-1 TCR
Donor 3 MDG1015

IFNγ (pg/mL)

Enhanced TCR-T Cell Proliferation

"Naked" NY-ESO-1 TCR

CD8 & CD3

Cell count

CellTrace

NY-ESO-1 TCR with PD1-41BB

CD8 & CD3

Cell count

CellTrace

Medigene
Superior Frequency of T Cells Producing Multiple Cytokines Compared to Naked TCR for Improved Anti-Tumor Activity

Improved Polyfunctionality (multi-cytokine production)

Greater Polyfunctional Strength Index

Effector: Granzyme B; IFN-γ; MIP-1α; Perforin; TNF-α; TNF-β

Stimulatory: GM-CSF; IL-2; IL-5; IL-7; IL-8; IL-9; IL-12; IL-15; IL-21

Chemoattractive: CCL-11; IP-10; MIP-1β; RANTES

Regulatory: IL-4; IL-10; IL-13; IL-22; TGF β 1; sCD137; sCD40L

Inflammatory: IL-1β; IL-6; IL-17a; IL-17F; MCP-1; MCP-4

Superior Frequency of T Cells Producing Multiple Cytokines Compared to Naked TCR for Improved Anti-Tumor Activity
PD1-41BB Switch Receptor Mitigates Tumor-Induced TCR-T Exhaustion

Superior Serial Killing Delivered by TCR-Ts with CTA-specific TCRs and PD1-41BB

SKMel23_PD-L1
- PRAME
 - Naked TCR
 - TCR_PD1-41BB
- Rechallenge with tumor
 - day 0
 - day 7
 - day 16

Mel624.38_PD-L1
- NY-ESO-1
 - Naked TCR
 - TCR_PD1-41BB
- Re-challenge with tumor
 - day 0
 - day 7
 - day 17

Orange = tumor spheroids
Grey = T cells
TCR-T Cells Retain Stemness by Maintenance of T Central Memory Cells After Four Rounds of Tumor Challenge

Day 0
Challenge 1
Challenge 2
Challenge 3
Challenge 4

T-mem subtypes of CD8+ TCRvβ1+

Tscm
Tcm
Tem
Temra
rest
PD1-41BB Switch Receptor Strongly Enhances TCR-T Cell Functions

- Overcome T cell exhaustion
- Mitigate inhibitory TME
- Sustained proliferation
- Enhanced functionality in vitro
- Maintenance of stemness
- In vivo efficacy

PD1-41BB
Validated Manufacturing Process with Successful Tech Transfer
92% Successful GMP Production of TCR-T Cells for MDG1011 Phase I Trial of Blood Cancers

1. Leukapheresis
2. Enrichment process
3. Activation of T cells

- CD8+ enrichment
- Intermediate product: cryopreserved CD8+ enriched cells
- CD8
- CD4
- T cell transduction using retromectin
- G-Rex device
- Cryo-bags
- anti-CD3 + anti-CD28
- Freezing
- Patient treatment
Evolution by Innovation: Connecting the Dots for TCR-T Therapies

<table>
<thead>
<tr>
<th>Technologies</th>
<th>Suitable and Safe TCR Target</th>
<th>High-affinity 3S TCR</th>
<th>Higher-avidity TCR-T cells</th>
<th>Enhanced Activity in TME</th>
<th>Robust Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPltope-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allo-HLA TCR Priming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision Pairing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD1-41BB Switch Receptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMP Drug Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Best-in-Class TCR-T Therapy for Patients
Thank you for your attention