TCR-Ts overcoming TME hurdles by switching immunosuppression to T cell activation with integrated Switch Receptor Technology

CHI Immuno-Oncology Summit
Boston, October, 2022

Dolores Schendel / CSO, Medigene AG, Munich, Germany
Forward looking statements disclaimer

All of the information herein has been prepared by the Company solely for use in this presentation. The information contained in this presentation has not been independently verified. No representation, warranty or undertaking, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information or the opinions contained herein. The information contained in this presentation should be considered in the context of the circumstances prevailing at that time and has not been, and will not be, updated to reflect material developments which may occur after the date of the presentation. The Company may alter, modify or otherwise change in any manner the content of this presentation, without obligation to notify any person of such revision or changes.

This presentation may contain certain forward-looking statements and forecasts which relate to events and depend on circumstances that will occur in the future and which, by their nature, will have an impact on the Company’s business, financial condition and results of operations. The terms “anticipates”, “assumes”, “believes”, “can”, “could”, “estimates”, “expects”, “forecasts”, “intends”, “may”, “might”, “plans”, “should”, “projects”, “will”, “would” or, in each case, their negative, or other variations or comparable terminology are used to identify forward-looking statements. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in a forward-looking statement or affect the extent to which a particular projection is realised. Factors that could cause these differences include, but are not limited to, implementation of the Company’s strategy and its ability to further grow, risks associated with the development and/or approval of the Company’s products candidates, ongoing clinical trials and expected trial results, technology changes and new products in the Company’s potential market and industry, the ability to develop new products and enhance existing products, the impact of competition, changes in general economy and industry conditions and legislative, regulatory and political factors. While we always intend to express our best judgment when we make statements about what we believe will occur in the future, and although we base these statements on assumptions that we believe to be reasonable when made, these forward-looking statements are not a guarantee of our performance, and you should not place undue reliance on such statements. Forward-looking statements are subject to many risks, uncertainties and other variable circumstances. Such risks and uncertainties may cause the statements to be inaccurate and readers are cautioned not to place undue reliance on such statements. Many of these risks are outside of our control and could cause our actual results to differ materially from those we thought would occur. The forward-looking statements included in this presentation are made only as of the date hereof. We do not undertake, and specifically decline, any obligation to update any such statements or to publicly announce the results of any revisions to any of such statements to reflect future events or developments.
“Medigene is developing differentiated, breakthrough cellular therapies to improve the lives of cancer patients”

We develop TCR-T therapies since synergistic signaling mechanisms can be mobilized through multiple natural or synthetic costimulatory pathways.
Our TCR discovery engine provides TCRs that display better **Specificity**, **Sensitivity** and **Safety** for selected target antigens.
One-for-all RV vector system efficiently transfers gene cargo into recipient patient T cells for autologous TCR-T therapy

1. Leukapheresis and T cell isolation
2. GMP: Activation of T cells and RV gene transfer
3. TCR drug product and analytical samples
4. GMP: Expansion, freezing and quality tests
5. Thawing and infusion into patient

One-for-all RV vector system efficiently transfers gene cargo into recipient patient T cells for autologous TCR-T therapy.
TCR-Ts may fail to function in a tumor microenvironment (TME) due to strong inhibition by tumor cells and lack of costimulation. Only inhibition without costimulation. T cells in the TME lack positive signals and face immuno-suppression from the PD1-PD-L1 axis. T cell responses are naturally tuned through positive and negative signals.

Costimulation and inhibition in balance.
TCR-Ts need positive costimulation to fully function in a hostile TME. Medigene’s Switch Receptor Technology enable TCR-Ts to receive positive costimulation from tumor cells.

TCR-Ts need costimulation to:
- Override PD-L1-mediated inhibitory signals
- Mediate better anti-tumor effector functions
- Proliferate and survive \textit{in vivo}

Medigene’s Switch Receptor Technology

\textit{Enable TCR-Ts to receive positive costimulation from tumor cells}
Our PD1-41BB Switch Receptor combines the extracellular PD1 domain with the intracellular 41BB-signaling domain for use in TCR-Ts

<table>
<thead>
<tr>
<th>Switch Receptor</th>
<th>Extracellular Domain</th>
<th>Transmembrane Domain</th>
<th>Intracellular Domain</th>
<th>Species</th>
<th>Transgenic expression</th>
<th>Expression with transgenic TCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD1-41BB</td>
<td>PD1 aa 21 – 165</td>
<td>PD1 aa 166 – 191</td>
<td>41BB (CD137) aa 214 – 255</td>
<td>Human-derived</td>
<td>Codon-optimized</td>
<td>Coupled via T2A element</td>
</tr>
</tbody>
</table>

US: US 11,365,237; China: ZL 201780031958.9; AU: 2017236069
PD1-41BB Switch Receptor in TCR-Ts converts PD1 inhibitory signals to positive activation through the 41BB costimulatory pathway

Costimulation and inhibition in balance

Inhibition w/out costimulation

Inhibition switched to costimulation
TCR-Ts co-expressing TCR & PD1-41BB Switch Receptor show enhanced recognition and killing of tumor cells \textit{in vitro}.
TCR-Ts co-expressing TCR & PD1-41BB Switch Receptor show enhanced recognition and killing of tumor cells \textit{in vitro}

Melanoma cell line

![Graph showing target cell count over hours of co-culture](image)

- PD1-41BB_TCR
- TCR
- Mock
- No T cells

Rv vector: 2 in 1 cargo of TCR & PD1-41BB

End
TCR-Ts co-expressing TCR & PD1-41BB show enhanced killing of 3D tumor cell spheroids after repetitive challenge (3X) *in vitro*

Melanoma cell line

Tumor spheroids are added to TCR-Ts in three consecutive challenges
TCR-Ts co-expressing TCR & PD1-41BB show enhanced killing of 3D tumor cell spheroids after repetitive challenge (3X) *in vitro*

Melanoma cell line

TCR alone

PD1:BB_TCR

Tumor spheroids are added to TCR-Ts in three consecutive challenges
T cells show better infiltration and faster killing of 3D tumor spheroids when TCR & PD1-41BB are co-expressed in TCR-Ts.

Enhanced TCR-T spheroid infiltration
Enhanced killing of 3D tumor spheroids
TCR-Ts co-expressing TCR & PD1-41BB show exquisite specificity and only kill antigen-positive 3D tumor cell spheroids.
TCR-Ts co-expressing TCR & PD1-41BB show exquisite specificity and only kill antigen-positive 3D tumor cell spheroids.
Co-expression of TCR & PD1-41BB strongly enhances TCR-T cell responses to tumor cells in vitro and in vivo

In vitro response

Tumor cells: MelA375_PDL1 PRAME_{low} PD-L1_{high}

TCR-T cells:
- UT
- TCR
- TCR_PD1-41BB

P-values were calculated using a two-way ANOVA and Tukey's multiple comparison test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001;

In vivo efficacy

T cells expressing a highly potent PRAME-specific T cell receptor in combination with a chimeric PD1-41BB co-stimulatory receptor show a favorable preclinical safety profile and strong anti-tumor reactivity. Sailer et al. Cancers 14, 2022.
IsoPlexis technology measures single cell poly-cytokine release in mixed T cell populations

- **Co-culture and separation of T cells**
- **Single cell analysis on chip**
- **Automated Imaging**
- **Data analysis**

32 T cell cytokine panel

- **Polyfunctional Strength Panel, per Cell: PSI**
 - **Single-Cell Multiplexed cytokine intensity**
 - **% Polyfunctional T cells: # of functions per cell**
 - **Polyfunctional Strength index**

- **Regulatory**
 - TCR+ T helper CD4+ T cells, immune response
- **Independent**
 - TCR- activated T helper CD4+ T cells
 - IFN-γ
 - IL-2
 - TNF-α
 - GM-CSF
- **Inflammatory**
 - Activated T helper cytokines
 - IL-1β
 - IL-6
 - IL-8
 - MCP-1
 - IL-17A

- **Cytotoxic**
 - Activated T cells, IFN-γ, TNF-α, IL-2
 - CD8+ T cells

- **Chemokine**
 - Chemokines and cytokines
 - CXCL-10
 - MCP-1
 - MIP-1α
 - MIP-1β
 - Eotaxin

PSI

- 5+ cytokine
- 4 cytokine
- 3 cytokine
- 2 cytokine

Medigene
TCR-Ts with TCR & PD1-41BB Switch Receptor show superior single cell poly-cytokine signatures compared to TCR alone

T cells expressing a highly potent PRAME-specific T cell receptor in combination with a chimeric PD1-41BB co-stimulatory receptor show a favorable preclinical safety profile and strong anti-tumor reactivity. Sailer1*, et al. Cancers 14, 2022
Unsupervised clustering of transcriptional profiles in UT T cells 14 days after serial stimulation with 3D tumor spheroids.
Unique transcription profiles emerge over time in TCR-Ts with TCR alone vs TCR & PD1-41BB after serial tumor cell stimulation

Unsupervised clustering of transcriptional profiles highlights a strong difference in the transcriptional landscape of T cells expressing the PD1-41BB Switch Receptor at 14 days after serial stimulation with 3D tumor spheroids.
Impact of PD1-41BB Switch Receptor on function of CD8 TCR-Ts

in vitro and *in vivo*

- CD8\(^+\) T cells with antigen-specific transgenic TCRs combined with PD1-41BB Switch Receptor showed:
 - Better proliferation
 - Greater poly-functional cytokine secretion profile for strong anti-tumor immunity
 - Enhanced killing of cancer cell lines *in vitro*, especially cells with high PD-L1
 - Improved infiltration of 3D tumor cell spheroids
 - Maintenance of functional activity upon repeated rechallenge with 3D spheroids
 - Superior *in vivo* control of outgrowth of tumors with low antigen and high PD-L1
 - Increased overall survival of animals bearing PD-L1\(^+\) tumors treated with TCR-Ts
TCR-Ts powered through integrated PD1-41BB Switch Receptor offer potential best-in-class treatment strategy for patients with PD-L1+ TME

- Inhibition
- Exhaustion
- Apoptosis

Inhibition

Current therapy options
TCR-Ts in combination with anti-PD1 or anti-PD-L1 antibodies to block inhibitory axis

Future option from Medigene
TCR-Ts with integrated PD1-41BB Switch Receptor for dual impact on inhibition and activation

Improved:
- Effector functions
- Survival
- Longevity
Thank you