Empowering TCR-Ts to infiltrate, proliferate and control solid tumors in a hostile tumor microenvironment

11/17/2021
Dolores Schendel, CEO/CSO Medigene AG
Forward looking statements disclaimer

All of the information herein has been prepared by the Company solely for use in this presentation. The information contained in this presentation has not been independently verified. No representation, warranty or undertaking, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information or the opinions contained herein. The information contained in this presentation should be considered in the context of the circumstances prevailing at that time and has not been, and will not be, updated to reflect material developments which may occur after the date of the presentation. The Company may alter, modify or otherwise change in any manner the content of this presentation, without obligation to notify any person of such revision or changes.

This presentation may contain certain forward-looking statements and forecasts which relate to events and depend on circumstances that will occur in the future and which, by their nature, will have an impact on the Company’s business, financial condition and results of operations. The terms “anticipates”, “assumes”, “believes”, “can”, “could”, “estimates”, “expects”, “forecasts”, “intends”, “may”, “might”, “plans”, “should”, “projects”, “will”, “would” or, in each case, their negative, or other variations or comparable terminology are used to identify forward-looking statements. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in a forward-looking statement or affect the extent to which a particular projection is realised. Factors that could cause these differences include, but are not limited to, implementation of the Company’s strategy and its ability to further grow, risks associated with the development and/or approval of the Company’s products candidates, ongoing clinical trials and expected trial results, technology changes and new products in the Company’s potential market and industry, the ability to develop new products and enhance existing products, the impact of competition, changes in general economy and industry conditions and legislative, regulatory and political factors. While we always intend to express our best judgment when we make statements about what we believe will occur in the future, and although we base these statements on assumptions that we believe to be reasonable when made, these forward-looking statements are not a guarantee of our performance, and you should not place undue reliance on such statements. Forward-looking statements are subject to many risks, uncertainties and other variable circumstances. Such risks and uncertainties may cause the statements to be inaccurate and readers are cautioned not to place undue reliance on such statements. Many of these risks are outside of our control and could cause our actual results to differ materially from those we thought would occur. The forward-looking statements included in this presentation are made only as of the date hereof. We do not undertake, and specifically decline, any obligation to update any such statements or to publicly announce the results of any revisions to any of such statements to reflect future events or developments.
Empowering T cells to infiltrate, proliferate and control solid tumors in a hostile tumor microenvironment

- Choosing receptor-ligand combinations that have the potential to alter the tumor microenvironment
 - TCR-T production of high IFN-γ
 - Antigen cross-presentation in the TME

- Overcoming inhibitory pathways and tumor-induced exhaustion by strong enhancement of T cell function
 - Altering the PD1-PD-L1 inhibitory axis using a PD1-41BB switch receptor
 - Impacts of PD1-41BB on TCR-Ts metabolic fitness
PRAME mRNA was broadly detected *in silico* and found at varying levels in many different cancer patient specimens.

Analyzed with in-house “Plotty” software, data extracted from TCGA dataset.
PRAME showed a high safety profile with respect to protein expression in healthy tissues based on H-scores in the TMA.

Analysis by Immunohistochemistry

Lung (including bronchioles) (1/3 cores)

Source: Indivumed GmbH, Germany
PRAME-TCR was isolated from a non-tolerized T cell repertoire.
The TCR Discovery Platform identifies many T cell clones as sources of specific and unique TCRs.

Screening of thousands of T cell clones yields large array of unique TCR sequences for later TCR lead selection.

- **Tens of thousands** of T cell clones are sorted and screened for specificity by testing their responses to HLA-A2+ T2 cells pulsed with relevant or irrelevant peptides.

- **Many hundreds** of individual T cell clones are screened for specificity by testing a panel of antigen-positive and negative tumor cell lines.

- **Unique specific** TCR sequences are analyzed by NGS and are further characterized in Medigene’s “Assay Tree” following transgenic expression.

NGS-based TCR sequence analysis.
Lead PRAME-SLL-specific TCR was selected on the basis of cytokine secretion, tumor cell killing and peptide sensitivity.

<table>
<thead>
<tr>
<th>IFNγ secretion</th>
<th>PRAME positive</th>
<th>PRAME negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>SkMel23</td>
<td>Mel624.38</td>
<td>MelA375</td>
</tr>
<tr>
<td>T23.8-2.1-027-004</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>T23.8-2.1-027-085_1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>T23.8-2.1-038-038</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>T23.8-2.1-061-119</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumor killing</th>
<th>PRAME positive</th>
<th>PRAME negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>SkMel23</td>
<td>Mel624.38</td>
<td>MelA375</td>
</tr>
<tr>
<td>T23.8-2.1-027-004</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>T23.8-2.1-027-085_1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>T23.8-2.1-038-038</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>T23.8-2.1-061-119</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

EC₅₀ values:
- T23.8-2.1-027-004: 1.04x10⁻⁸ M
- T23.8-2.1-027-085_1: 2.05x10⁻⁸ M
- T23.8-2.1-038-038: 1.13x10⁻⁷ M
- T23.8-2.1-061-119: 9.86x10⁻⁸ M
IFNγ has a strong positive impact against tumor cells in the TME

- Tumor cells can be driven into:
 - Apoptosis
 - Dormancy
 - Senescence
- Angiogenesis can be inhibited
- Metastasis can be inhibited

Jorgovanovic et al. Biomarker Res.8:49, 2020
The two-edged sword: IFNγ can upregulate the expression of PD-L1 on the surface of tumor cells

IFNγ leads to upregulation of PD-L1 surface expression on cancer cells

Jorgovanovic et al. Biomarker Res. 8:49, 2020
Human melanoma lines with different levels of PRAME and PD-L1 vary in growth kinetics in immunodeficient NSG mice *in vivo*

Mel624.38 cells
- Growth rate – slow
- HLA-A*02:01 – positive
- PRAME endogenous mRNA – high
- PD-L1 – non-inducible

MelA375 cells
- Growth rate – fast
- HLA-A*02:01 – positive
- PRAME endogenous mRNA – low
- PD-L1 – IFNγ inducible
Melanoma control *in vitro* and *in vivo* by TCR-Ts expressing the PRAME-specific TCR in absence of PD1-41BB

For A375, 1 mouse in the control group and 2 mice in the TCR group died due to unknown reasons.
Empowered T cells for hostile solid tumor microenvironment (TME): Co-stimulatory PD1-41BB signal switch receptor

Medigene’s PD1-41BB ‘switch receptor’ converts the inhibitory signal usually observed in the PD-1 / PD-L1 interaction into a stimulatory signal to enable TCR-Ts to function with greater activity and duration in the TME.

Inhibition
- Exhaustion
- Apoptosis

Hypo-active T cell

Inhibition

Activation

Improved:
- Effector functions
- Survival
- Longevity

Current therapy options
TCR-Ts in combination with anti-PD1 or anti-PD-L1 antibodies

Future options by Medigene
TCR-Ts with integrated chimeric PD1-41BB switch receptor
Co-expression of PD1-41BB does not change levels of PRAME TCR cell surface expression
High-avidity PRAME-specific TCR-04 in combination with PD1-41BB signal switch receptor retained specificity, sensitivity and safety profile.

No change in functional avidity

No difference in HLA-A*02 sub-type specificity

No change in off-target toxicity in panel of lymphoblastoid cell lines (LCL)

* LCL express low levels of PRAME, determined by qPCR
Expression of PD1-41BB enhances specific release of IFNγ in response to recognition of cancer cell lines expressing high PD-L1.

* P-values were calculated using a two-way ANOVA and Tukey’s multiple comparison test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001

RPKM data derived from TRON database

neg = PD-L1 negative
TD = PD-L1 transduced
ind = PD-L1 IFN-γ inducible
end = PD-L1 enogenously expressed
Expression of PD1-41BB in TCR-Ts leads to improved repetitive killing capacity

- TCR-T cells expressing PD1-41BB – improved killing of PD-L1-positive tumor cells.
- PD1-41BB overcomes the inhibitory signal delivered via the PD-1/PD-L1 checkpoint pathway.
Expression of PD1-41BB enhances the fitness of TCR-Ts after repeated exposure (6x) to 3D tumor cell spheroids

- PD-L1

- + PD-L1

P-values were calculated using a one-way ANOVA and Tukey’s multiple comparison test.

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001

Mean of 3 donors from same experimental set-up

Triplicates per donor and tumor cell line

Similar results from previous datasets
PD1-41BB co-stimulatory switch to overcome inhibitory signals in the tumor milieu for persistence in solid tumor indications

Enhanced T cell expansion

<table>
<thead>
<tr>
<th>Glucose [mM]</th>
<th>PRAME_PD1-41BB_TCR-T</th>
<th>PRAME_TCR-T ("naked")</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enhanced TCR-T spheroid infiltration

- Mel624.38_PD-L1
- PRAME^{pos}(+++)
- PD-L^{1pos}(+++)

Enhanced killing of 3D tumor spheroids

- Count of infiltrated T cells
- Spheroid volume x10⁶ [μm³]

Graphs showing cellular counts and spheroid volumes over time.
Expression of biomarkers in MelA375_PD-L1 melanoma cells with stable PD-L1 expression used for *in vivo* experiments

Flow cytometry

- **HLA-A2 staining**
 - stained
 - Isotype ctrl
 - MelA375
 - MelA375_PD-L1

- **PD-L1 staining**
 - stained
 - Isotype ctrl
 - MelA375
 - MelA375_PD-L1

qPCR

- PRAME expression normalized to GUSB (copies/ng RNA)

- **PRAME levels**
 - Mel624.38
 - MelA375
 - MelA375_PD-L1
 - 647-V

- **HLA-A2 staining**
 - Median FI
 - unstained
 - Isotype ctrl
 - MelA375
 - MelA375_PD-L1

- **PD-L1 staining**
 - Median FI
 - unstained
 - Isotype ctrl
 - MelA375
 - MelA375_PD-L1
Co-expression of TCR-4 with PD1-41BB strongly enhances *in vitro* and *in vivo* responses

In vitro response

- **Tumor cells:**
 - MelA375
 - MelA375_PD-L1
 - PRAME$_{low}$ PD-L1$_{high}$

- **TCR-T cells:**
 - UT
 - TCR
 - TCR_PDL1-41BB

P-values were calculated using a two-way ANOVA and Tukey’s multiple comparison test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

In vivo efficacy

- **Tumor cells:**
 - T cell injection
 - UT
 - TCR
 - TCR_PD1-41BB

- **Tumor volume [mm3]**

- **Days after tumor injection**
 - 0 7 14 21 28 35 42

- **IFN-γ (pg/ml)**
 - ns ✱✱✱✱

- **IFN-γ (pg/ml)**
 - ns ✱✱✱✱

- **Individual mice (6 per group):**
 - 10 mio PRAME-TCR$^+$ T cells
The IsoPlexis 32 T cell cytokine panel showed enhanced polyfunctionality and PSI in TCR-Ts expressing TCR with PD1-41BB.
Polyfunctionality heat map revealed major differences in the cytokine signatures of PRAME-specific TCR-T cells +/- PD1-41BB.
Summary of impact of the PD1-41BB switch receptor on function of CD8\(^+\) T cells expressing the PRAME-specific TCR *in vitro* and *in vivo*

- CD8\(^+\) T cells with PRAME TCR with PD1-41BB switch receptor showed enhanced:
 - proliferation
 - polyfunctional cytokine secretion, profile for strong anti-tumor immunity
 - killing of cancer cell lines *in vitro*, especially with high PD-L1
 - tumor infiltration into 3D spheroids
 - function upon repeated exposure to 3D tumor spheroids (6X)
 - metabolic fitness in presence of low glucose and TCGFβ
 - *in vivo* control of tumor outgrowth and increased overall survival of tumors with low antigen and high PD-L1
Thank you