High Fidelity Production of TCR-T Cells from Elderly Hematologically-Challenged Patients With Blood Cancers

Cell UK 2022

London, 7-8 November 2022

Dolores Schendel, CSO Medigene AG
All of the information herein has been prepared by the Company solely for use in this presentation. The information contained in this presentation has not been independently verified. No representation, warranty or undertaking, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information or the opinions contained herein. The information contained in this presentation should be considered in the context of the circumstances prevailing at that time and has not been, and will not be, updated to reflect material developments which may occur after the date of the presentation. The Company may alter, modify or otherwise change in any manner the content of this presentation, without obligation to notify any person of such revision or changes.

This presentation may contain certain forward-looking statements and forecasts which relate to events and depend on circumstances that will occur in the future and which, by their nature, will have an impact on the Company’s business, financial condition and results of operations. The terms “anticipates”, “assumes”, “believes”, “can”, “could”, “estimates”, “expects”, “forecasts”, “intends”, “may”, “might”, “plans”, “should”, “projects”, “will”, “would” or, in each case, their negative, or other variations or comparable terminology are used to identify forward-looking statements. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in a forward-looking statement or affect the extent to which a particular projection is realised. Factors that could cause these differences include, but are not limited to, implementation of the Company’s strategy and its ability to further grow, risks associated with the development and/or approval of the Company’s products candidates, ongoing clinical trials and expected trial results, technology changes and new products in the Company’s potential market and industry, the ability to develop new products and enhance existing products, the impact of competition, changes in general economy and industry conditions and legislative, regulatory and political factors. While we always intend to express our best judgment when we make statements about what we believe will occur in the future, and although we base these statements on assumptions that we believe to be reasonable when made, these forward-looking statements are not a guarantee of our performance, and you should not place undue reliance on such statements. Forward-looking statements are subject to many risks, uncertainties and other variable circumstances. Such risks and uncertainties may cause the statements to be inaccurate and readers are cautioned not to place undue reliance on such statements. Many of these risks are outside of our control and could cause our actual results to differ materially from those we thought would occur. The forward-looking statements included in this presentation are made only as of the date hereof. We do not undertake, and specifically decline, any obligation to update any such statements or to publicly announce the results of any revisions to any of such statements to reflect future events or developments.
MDG1011: Proof-of-concept phase I study of TCR-T therapy in blood cancer

MDG1011: PRAME/HLA-A2-specific TCR-T therapy for blood cancers

- PRAME – well-characterized, broadly expressed cancer-testis antigen
- CD8-enriched TCR-T drug products with multi-functionality

Phase I part of Phase I/II trial

- Patients with refractory/relapsed
 - Acute myeloid leukemia (AML)
 - Myelodysplastic syndrome (MDS)
 - Multiple Myeloma (MM)

Dose escalation study

- 3+3 clinical trial design
- Data Safety Monitoring Board reviews between cohorts

Single defined dose of CD8⁺ TCR-T cells/kg BW

- 1x10⁵ TCR⁺cells/kg
- 1x10⁶ TCR⁺cells/kg
- 5x10⁶ TCR⁺cells/kg
- up to 1x10⁷ TCR⁺cells/kg (optional)

https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-000440-18/DE
MDG1011: Manufacturing challenges successfully met

Patients with AML, MDS or MM with *relapsed or refractory disease* presented special challenges for manufacture of MDG1011
- Patients were mostly elderly
- Patients had cancer of the blood system
- Patients were heavily pretreated
- AML blasts present at substantial levels in leukapheresis starting materials, in several cases
- Patients had rapidly progressing disease, so time was of essence

We achieved a 92% success rate in production of CD8\(^+\) TCR-Ts
- Drug Products were derived from enriched cryopreserved CD8\(^+\) T cells
- Leukapheresis was repeated for two patients only, with one success and one failure to get starting CD8\(^+\) T cell numbers
- Vein-to-vein time of ~7 weeks: production ~3 weeks; QC ~3 weeks and patient preparation for infusion ~1 week
- Nine patients were successfully dosed, whereas four patients succumbed before IMP administration

The cryopreserved Drug Products showed functional activity *in vitro* and in patients *in vivo*
MDG1011: Background for development of TCR-T therapy for blood cancer and solid tumors – prevalence of PRAME

Scale is given as RSEM. RSEM quantifies gene and isoform abundances from single-end or paired-end RNA-Seq data. Graphic compiled by Medigene, from publicly available TCGA-data.
MDG1011: Background for development of TCR-T therapy for blood cancer – relevance of PRAME

<table>
<thead>
<tr>
<th></th>
<th>PRAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expression in bulk AML</td>
<td>Cancer-testis antigen</td>
</tr>
<tr>
<td>Expression in LSC</td>
<td>> 65 %</td>
</tr>
<tr>
<td>Expression in HSC / other cells</td>
<td>+/-</td>
</tr>
<tr>
<td>Oncogenicity</td>
<td>-</td>
</tr>
<tr>
<td>Immunogenicity</td>
<td>++</td>
</tr>
<tr>
<td>Clinical efficacy</td>
<td>++</td>
</tr>
<tr>
<td>MRD Monitoring</td>
<td>++</td>
</tr>
<tr>
<td>Expression in bulk AML</td>
<td>Established by qPCR</td>
</tr>
</tbody>
</table>

Anguille et al, Leukemia 2012; Lichtenegger et al, Immunotherapy 2013
MDG1011: Background for development of TCR-T therapy for blood cancer – feasibility to recruit PRAME+ HLA-A*02:01+ patients

1. Pre-screening for general eligibility
2. Screening for HLA-A2 and PRAME mRNA in bone marrow or blood
3. Inclusion and treatment

HLA and antigen frequency is critical

- HLA-A*02:01+
- PRAME+
- Other

- 45%
- 55%
- 27%
MDG1011: Establishment of safety profiles of antigen and TCR-T cells

Target Antigen and HLA-Peptide Ligands at Molecular and Cellular Levels

- Genetic isotypes, RNA, protein, peptide expression
- Expression in cancer cell lines and tumor specimens
- Expression in cancer databases

Target safety

- Expression from databases of healthy tissues
- In vitro models for functional testing

TCR selectivity

- Vetting of multiple TCRs to select Lead TCR

Safety Profile

- HLA-peptide ligands for lead TCR
- "Go/no go" studies of TCR-T cells in final Drug Product formulation
MDG1011: GMP production of personalized TCR-T therapy

Medigene’s TCRs are delivered via a vector to genetically modify autologous patient T cells to express the desired tumor-specific TCR.

1. Leukapheresis and T cell isolation
2. Activation of T cells and transfer of TCR
3. Expansion, freezing and quality tests
4. Thawing and infusion into patient

TCR drug product and analytical samples

TCR vector
MDG1011: Manufacturing process based on multi-modular system

Advantages:
- Modular semi-automated system provides flexibility
- Up- and down-scaling possible

Disadvantages:
- High manual interventions with risk of contamination
- Multiple handling steps → highly skilled personnel needed
- Difficult process to standardize
- Clean room class A and B required
MDG1011: Diverse testing was performed for Drug Product release and Drug Product characterization at CMO and MDG

Release at BioNTech
- Safety Parameters
- Identity
- Potency
- Quantity / Cell Dose
- Purity / Impurity
- Appearance

Characterization at BioNTech
- Cellular Impurities / Cell Composition
- T Cell Subsets
- Viability and Cell Count (during entire process of drug production)

Characterization at Medigene
- Process-Related Impurities
- T Cell Subsets
- IFN\(\gamma\) Secretion (ELISA)
- Intracellular Cytokine Staining
- Cytotoxic Activity

CMO for this study was BioNTech IMFS at Idar-Oberstein, Germany. The GMP process for TCR-T Drug Product manufacture was co-developed with the Departments of Translational Medicine and Cell Therapy Process Development at Medigene.
MDG1011: Consistent CD8^+ TCR-T cell Drug Products generated from variable patient leukapheresis starting materials
MDG1011: Production of required TCR-T cell numbers expressing specific TCR was feasible for Dose Cohorts 1 - 3

- Cohort 1: 0.0, 0.1, 0.2, 0.5, 1.0, 1.5
 - 4 batches
 - 6 bags

- Cohort 2: 0.0, 0.1, 0.2, 0.5, 1.0, 1.5
 - 5 batches
 - 10 bags

- Cohort 3: 0.0, 0.1, 0.2, 0.5, 1.0, 1.5
 - 3 batches
 - 6 bags

Transduced cells per kg BW [in 10^6]
MDG1011: Drug Products with excellent cell viability before and after freezing and thawing were manufactured for all patients.

n = 13 batches, for one batch only one bag was filled.
MDG1011: Drug Product characterization encompassed multiple molecular and cellular technologies

Surface Expression
Double staining of TCR Vβ chain and pHLA-specific multimer measured by flow cytometry

Molecular Expression
Vector copy number measured in sorted TCR-T cell populations by dPCR

Antigen-Specific Cytokine Responses
Intracellular IFN-γ-staining of TCR-T cell populations after stimulation with T2 cells + specific peptide; T2 cells + ctrl peptide are IFN-γ negative (not shown) Multiple cytokines/cytotoxins can be studied
MDG1011: Activation markers and checkpoint receptor expression changed between apheresis starting materials and final Drug Products.
MDG1011: Peptide-specific stimulation triggered poly-functional cytokine release in all Drug Products
MDG1011: Analytical methods to assess T cell pharmacokinetics and PRAME mRNA expression in peripheral blood and bone marrow

- Pharmacokinetics of TCR-T cells in MDG1011 patients was assessed with validated fit-for-purpose assays using:
 - flow cytometry (FC)
 - TCR-expressing cells were identified with a TCRV-beta antibody + pMHC-specific dextramer
 - Double-positive cells were enumerated in the gated population of CD45⁺/CD3⁺/CD8⁺ T cells in the peripheral blood (Limit of quantification (LoQ)= 0.015%)
 - Digital droplet PCR (dPCR)
 - TCR-transduced T cells were identified by the RNA of the viral element Woodchuck Hepatitis Post-transcriptional Regulatory Element (WPRE)
 - Copies of the WPRE element were quantified in bulk RNA of patient peripheral blood samples (Limit of quantification (LoQ) dPCR = 36 copies/100ng RNA)

- Measurement of PRAME mRNA in bone marrow samples and/or peripheral blood and was done using a validated real-time quantitative PCR (qPCR) assay. (Limit of quantification (LoQ) qPCR = 70 copies/25ng RNA)
MDG1011: Biological and clinical activity detected in patients in vivo

CRS as an indicator for biological activity of MDG1011
- Grade I Cytokine Release Syndrome seen in C2P1
- Grade II Cytokine Release Syndrome seen in C3P1

T cell persistence seen in 4 patients treated with the two highest doses of MDG1011

PRAME mRNA was reduced at Week 4 in bone marrow samples of 4 of 5 evaluable patients

PRAME mRNA was reduced at Week 4 in blood of AML/MDS patients treated with highest dose of MDG1011
MDG1011: Benefits of using molecular and cellular Drug Product Immune Assessments and Patient Immune Monitoring

- Complex characterization of TCR-T Drug Products and immune monitoring of TCR-T cells in patients in vivo are critical steps for progressing manufacturing and clinical developments of living immunotherapies.

- Deep characterization of Drug Products and correlation with clinical observations in patients:
 - facilitate deeper understanding of immune responses that may yield clinical benefit
 - provide insight into differences between Drug Products associated with CRS and/or clinical response
 - deliver crucial data on effects of TCR-T variations in Drug Product Immune Assessment in vitro vs. Patient Immune Monitoring in vivo
 - give better insight into parameters needed to define potency of TCR-T cells

- Approaches validated in Phase I study and knowledge gained can be extended in Phase 2 to acquire more data and derive better answers to hypothesis-generated questions from Phase 1.
Thank you