Immune monitoring tools and their application

Immuno UK, 29 September 2022

Petra Prinz, Medigene Immunotherapies
Forward looking statements disclaimer

All of the information herein has been prepared by the Company solely for use in this presentation. The information contained in this presentation has not been independently verified. No representation, warranty or undertaking, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information or the opinions contained herein. The information contained in this presentation should be considered in the context of the circumstances prevailing at that time and has not been, and will not be, updated to reflect material developments which may occur after the date of the presentation. The Company may alter, modify or otherwise change in any manner the content of this presentation, without obligation to notify any person of such revision or changes.

This presentation may contain certain forward-looking statements and forecasts which relate to events and depend on circumstances that will occur in the future and which, by their nature, will have an impact on the Company’s business, financial condition and results of operations. The terms “anticipates”, “assumes”, “believes”, “can”, “could”, “estimates”, “expects”, “forecasts”, “intends”, “may”, “might”, “plans”, “should”, “projects”, “will”, “would” or, in each case, their negative, or other variations or comparable terminology are used to identify forward-looking statements. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in a forward-looking statement or affect the extent to which a particular projection is realised. Factors that could cause these differences include, but are not limited to, implementation of the Company’s strategy and its ability to further grow, risks associated with the development and/or approval of the Company’s products candidates, ongoing clinical trials and expected trial results, technology changes and new products in the Company’s potential market and industry, the ability to develop new products and enhance existing products, the impact of competition, changes in general economy and industry conditions and legislative, regulatory and political factors. While we always intend to express our best judgment when we make statements about what we believe will occur in the future, and although we base these statements on assumptions that we believe to be reasonable when made, these forward-looking statements are not a guarantee of our performance, and you should not place undue reliance on such statements. Forward-looking statements are subject to many risks, uncertainties and other variable circumstances. Such risks and uncertainties may cause the statements to be inaccurate and readers are cautioned not to place undue reliance on such statements. Many of these risks are outside of our control and could cause our actual results to differ materially from those we thought would occur. The forward-looking statements included in this presentation are made only as of the date hereof. We do not undertake, and specifically decline, any obligation to update any such statements or to publicly announce the results of any revisions to any of such statements to reflect future events or developments.
Immune monitoring plays an important role in the detection of cellular immune responses at preclinical and clinical stages and is essential for the development and clinical application of living immunotherapies.

Immune monitoring

- facilitates a deeper understanding of the immune response *in vitro* and *in vivo*
- provides crucial data on the effectiveness of treatment in preclinical models
- provides insight into basis of clinical efficacy in patients
- has the potential to identify new biomarkers or therapeutic targets
Multiple assays are used for immune monitoring in TCR-T cell therapy

Identification of TCR-T cells
- Multimer staining of T cells expressing recombinant TCR
- Digital droplet PCR for detection of recombinant TCR

Characterization of TCR-T cells
- Determination of T-memory subset composition
- Determination of T-activation / T-checkpoint status

Functional analysis of TCR-T cells
- Multiplex assay of TCR-T cytokine secretion
- Intracellular cytokine staining of TCR-expressing T cells
- Single cell secretome of T cells expressing recombinant TCR
- 3D-serial killing mediated by TCR-Ts
- Proliferation of TCR-Ts after stimulation
Identification of TCR-T cells
Dual staining of TCRvβ and peptide-MHC precisely identifies TCR-expressing T cells in drug products or patient samples

TCR-T drug products

Sorting and determination of vector copy number

Intensity of multimer binding is dependent on the vector copy number

Possible applications:
- Determination of the transduction efficiency
- Dose calculation based on binding the relevant peptide-MHC complex
- Analysis of in vivo persistence by detection of TCR-T cells in patient blood and bone marrow
Digital droplet PCR (dPCR) identifies TCR-T cells with molecular precision

- TCR-T cells are identified by the RNA of a viral element present in the vector used for TCR transfer.

- dPCR allows quantification of the target sequences without need for comparison against a standard curve.

- dPCR is easier to validate as it has better precision, reproducibility and sensitivity.

- The dPCR would be expected to be more sensitive for TCR detection. CAVEAT: a high fraction of tumor cells could contribute to failure to have adequate numbers of T cells in the processed materials due to strong tumor-derived mRNA as can be the case in blood cancers.
Phenotypic characterization of TCR-T cells
Multi-color flow cytometry reveals variations in T-memory composition of TCR-T cells

Possible applications:
- Characterization of the starting material and possible correlation to the composition of drug products
- Influence of the production process on the T-memory composition
- Characterization of TCR-T cells “in vivo”

Drug Products	DP-1	DP-2	DP-3
Apheresis | Drug Product | Apheresis | Drug Product | Apheresis | Drug Product
% of CD3+CD8+

T-memory staining panel:
- live/dead
- CD45
- CD3
- CD8
- CD4
- pMHC
- TCRvß
- Multimer
- CD45RA
- CCR7
- CD27
- CD95
Multi-color flow cytometry identifies activation status of TCR-T cells

Possible applications:
- Characterization of the starting material and possible correlation to the expression in drug products
- Influence of the production process on the expression of activation and checkpoint markers
- Characterization of TCR-T cells “in vivo”
Functional analysis of TCR-T cells
Multiplex technologies show cytokine potential of TCR-T cells

Possible applications:
- Characterization of the functional activity of drug products by analyzing coculture supernatants
- IMP activity by analyzing patient serum after IMP administration in line with TCR-T immunotherapy

CAVEAT: Only secretion of single cytokines is analyzed – no real determination of poly-functionality
Intracellular cytokine multi-color flow cytometry identifies polyfunctional TCR-T cells

Possible applications:
- Comparison of different TCR-T cells with regard to their polyfunctionality
- Identification of a cytokine signature relevant for potent TCR-T drug products
- Co-receptor dependency

<table>
<thead>
<tr>
<th>Intracellular cytokine multi-color flow cytometry identifies polyfunctional TCR-T cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracellular cytokine staining</td>
</tr>
<tr>
<td>live/dead</td>
</tr>
<tr>
<td>pMHC</td>
</tr>
<tr>
<td>Multimer</td>
</tr>
<tr>
<td>Cytokine 1</td>
</tr>
</tbody>
</table>

Analysis of TCR co-receptor dependency
Single cell secretome analysis (Isoplexis) shows polyfunctionality of TCR-T cells

Possible applications:
- Comparison of different TCR-T cells with regard to their polyfunctionality
- Identification of a cytokine signature relevant for potent TCR-T drug products
- Possible distinction between non-responders and responders in clinical settings based on the PSI
Live cell imaging using IncuCyte S3 shows 3D serial killing by TCR-T cells

<table>
<thead>
<tr>
<th>day 0</th>
<th>day 3</th>
<th>day 7</th>
<th>day 10</th>
<th>day 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCR-T cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mod. TCR-T cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Possible applications:

- Comparison of different TCR-T cells with regard to their killing capacity
- Analysis of the killing of tumor target cells expressing different amounts of relevant peptide-MHC
- Serial challenges of TCR-T cells with tumor spheroids resemble an intermediate step between *in vitro* and *in vivo* experiments
Multi-color flow cytometry identifies proliferating TCR-T subsets

Possible applications:
- Comparison of different TCR-T cells with regard to their proliferative capacities
- Analysis of proliferation-induced changes in marker expression
- Identification of TCR-T cell subsets with the highest proliferative potential
A wealth of information is gained with multiple immune monitoring approaches

- T-memory composition
- Expression of activation markers
- Expression of checkpoint markers
- Expression of chemokine receptors

Phenotypic characterization of drug products

- Polyfunctionality: secretion of multiple cytokines by one cell
- Serial killing of tumor spheroids
- Proliferation of TCR-T subsets

Functional characterization of drug products

Identification of biomarkers to predict clinical outcome

- Identification the characteristics of a drug product that lead to anti-tumor activity and good clinical outcome

In vivo persistence of TCR-T cells

- Dual staining of peptide-MHC and TCRβ using flow cytometry
- Identification of vector elements using digital droplet PCR

A wealth of information is gained with multiple immune monitoring approaches.
Thank you